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Abstract

We appraise a first-order two-compartment model describing zinc (Zn) bioaccumulation in

abalone Haliotis diversicolor supertexta and their food source, red alga Gracilaria tenuistipitata var.

liui by probabilistic analysis of the biokinetic parameter variabilities. The model was parameterized

using field and laboratory data, and predictions were quantitatively compared with field-measured

tissue Zn concentrations obtained from selected abalone farms. Based on the reliable information

from the published literature, we assigned the lognormal distribution model to characterize model

inputs. Input variables included bioconcentration factor (BCF) of abalone, biomagnification factor of

abalone, BCF of algae and depuration rate constants of abalone (k2) for Zn from water and food.

Compared with the field data, most of the measurements fall within the predicted 25th and 75th

percentile range, indicating applying Monte Carlo technique to the first-order two-compartment

model generated probabilistic estimates of Zn concentrations in abalone and algae that were

consistent with field observations. Sensitivity analysis reveals that the input critical parameters that

most influence the model output are BCF and k2 of abalone. Our results suggest that the probabilistic

approach allows a range of possible outcomes and their likelihood; it better informs both

aquacultural risk assessors and risk managers. The degree of conservatism in the deterministic

bioaccumulation models can also be evaluated against this distribution.
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1. Introduction

Abalone, Haliotis diversicolor supertexta, is the most abundant abalone species in

Taiwan. H. diversicolor supertexta is commercially important for fisheries and aquaculture

in Taiwan (Chen, 1989). H. diversicolor supertexta is appreciated for its delicacy and high

market value. The aquaculture of H. diversicolor supertexta, thus, is a promising business

(Chen, 1989; Singhagraiwan and Doi, 1993).

Zinc (Zn) is an essential micronutrient found at high levels in the algae and in the

tissues of fish/shellfish (Hogstrand et al., 1998; Genter and Lehman, 2000). Zinc is

available to abalone from both the dissolved phase (e.g., gill uptake) and the diet (e.g., red

alga Gracilaria tenuistipitata var. liui ingestion). If waterborne Zn levels are elevated,

however, toxicity can occur and have severe effects on the health of abalone, which will

reduce market prices and cause closure of abalone farms (Hahn, 1989; Conroy et al., 1996;

Knauer et al., 1997).

Previous investigations indicated that Zn has been detected in many rivers and that

maximum Zn concentrations in contaminated aquacultural waters are reported to range

from 60 to 300 Ag l � 1 in different areas of Taiwan (Lee et al., 1996; Lin and Liao, 1999).

Because few previous studies have evaluated Zn toxicity to H. diversicolor supertexta, we

did not have an a priori estimate of internal lethal body burdens. Mechanisms of Zn

toxicity in abalone have not been investigated extensively.

Vermeire et al. (2001) pointed out that probabilistic modeling has received increasing

support as a promising technique for characterizing uncertainty and variation in estimates of

exposure to environmental contaminants. To date, however, only a limited number of risk

assessments regarding aquacultural management have incorporated probabilistic analyses.

A predictive assessment is needed to evaluate the potential for Zn bioaccumulation, toxic

effects to abalone and risks to human health. The determination of biokinetic parameters is

an essential component in the risk assessment of potential harmful chemicals. A well-

established one-compartment uptake-depuration model may provide realistic estimates of

the biokinetic parameters such as uptake and depuration rate constants through a laboratory

exposure experiment (Lin and Liao, 1999). The reliability of the predictive model, however,

is determined by the precision of the model inputs. In order to assess how model predictions

are affected by the uncertainties in biokinetic parameter values, we use the probability

density function (pdf) to characterize biokinetic variables.

This paper applied a first-order two-compartment model to evaluate the importance of

biokinetic variability in Zn bioaccumulation in abalone. The two-compartment model

describes the processes of uptake and elimination of Zn in abalone between water and its

food source, red alga G. tenuistipitata var. liui. The following three elements are used to

perform a probabilistic analysis in the predictive bioaccumulation modeling: (1) to

characterize the uncertainty on the selected biokinetic parameters influencing bioaccumu-

lation, (2) to produce a Monte Carlo-simulated prediction of Zn concentrations in abalone

and algae and to perform a sensitivity analysis to identify critical inputs and (3) to interpret

the results in the light of uncertainty and to compare with published field studies obtained

from three selected commercial abalone farms.

The probabilistic framework was selected because it overcomes certain limitations in

the deterministic approach. In particular, the deterministic approach lacks any precise
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evaluation of the uncertainties and the conservation estimates implied in the results. The

combination of a predictive bioaccumulation model and an uncertainty analysis would

help to understand the biokinetic behavior of waterborne metals in abalone associated with

the human health risk resulting from consumption of abalone.

2. Materials and methods

2.1. Model structure

We used a first-order two-compartment model to describe uptake and elimination

processes of abalone exposed to Zn in an abalone-farming pond. Fig. 1 shows the

processes considered in this study. The scenarios (Fig. 1) that we considered were (i) the

exchange of Zn between abalone and dissolved Zn was modeled as a first-order process,

with additional Zn accumulation from ingested algae; (ii) abalone ingest only algae and

other suspended particles uptakes are negligible; (iii) tissue concentration of Zn per unit

biomass of abalone increases as a result of direct uptake from water and through

assimilation of algae; and (iv) tissue concentration tend to decrease as a result of

elimination from the whole body.

The first-order two-compartment model for the gain and loss of Zn accumulation in

abalone and algae features constant biokinetic rates and constant water concentration.

Fig. 1. Schematic showing the first-order two-compartment model of Zn bioaccumulation in abalone H. diversilor

supertexta and their food red alga G. tenuistipitata var. lilu (see Eqs. (1) and (2) for full explanation).
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Accordingly, the dynamic behavior corresponding to the graphic model of Fig. 1 would be

represented as

dCmðtÞ
dt

¼ k1Cw þ k1fCaðtÞ � ðk2 þ k2f ÞCmðtÞ; ð1Þ

dCaðtÞ
dt

¼ k1aCw � ðk2a þ k1f ÞCaðtÞ; ð2Þ

where Cm(t) is the time-dependent Zn concentration in abalone soft tissue (Ag g� 1), Ca(t)

is the time-dependent Zn concentration in algae (Ag g� 1), t is the time of exposure (day),

Cw is the dissolved Zn concentration in water (Ag g� 1), k1 is the uptake rate constant from

dissolved phase by abalone (ml g� 1 day � 1), k1f is the uptake rate constant from algae by

abalone (g g� 1 day� 1), k2 is the depuration rate constant for Zn in abalone (day
� 1), k2f is

the elimination rate constant for Zn from food in abalone (day � 1), k1a is the uptake rate

constant from dissolved Zn by algae (ml g� 1 day � 1) and k2a is the depuration rate

constant for Zn in algae (day� 1).

We consider the steady-state condition in Eq. (2) and solve for Ca gives,

Ca ¼
k1a

k2a þ k1f
Cw ¼ BCFaCw; ð3Þ

where BCFauCa/Cw = k1a/(k2a + k1f) is the bioconcentration factor (BCF) for algae (ml

g� 1). By substituting Eq. (3) into Eq. (1), and solving for Cm(t) gives,

CmðtÞ ¼ Cmðt ¼ 0Þe�ket þ ku

ke
Cwð1� e�ketÞ; ð4Þ

where ku and ke represent the overall uptake and overall elimination rate constants and

have the form as,

ku ¼ k1 þ k1fBCFa; ð5Þ

ke ¼ k2 þ k2f : ð6Þ

The Zn concentration in abalone is calculated as Cm = ku/keCw =BAFmCw when

equilibrium is achieved in Eq. (4) in that we define BAFmu ku/ke and has a form as,

BAFm ¼ ku

ke
¼ BCFm

1þ k2fk
�1
2

þ BMFmBCFa; ð7Þ

where BAFm is the bioaccumulation factor (BAF) for abalone (ml g� 1), BCFm= k1/k2 is

the BCF for abalone (ml g� 1) and BMFm= k1f/ke is the biomagnification factor (BMF) for

abalone.

The input variables needed to model the Zn bioaccumulation in abalone and algae

include abalone bioconcentration factor BCFm, abalone biomagnification factor BMFm,

algae bioconcentration factor BCFa and biokinetic parameters of abalone elimination rate

constant for Zn form food k2f and abalone depuration rate constant for Zn k2.
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2.2. Input probability distributions

Parameterization of the model involved selecting data sets and deriving input distribu-

tions. Current literature was reviewed to develop probability distributions for the random

variables appearing in the bioaccumulation model adopted. Source data of biokinetic

parameters appeared in Eqs. (1) and (2) would be obtained from a published study by Chen

(1984, 1989), Lee et al. (1996), Lin and Liao (1999) and Chen and Lee (1999). Data were

sorted by reported statistical measure, e.g., mean, minimum, maximum, etc. Table 1

summarizes the estimated biokinetic parameters (BCFm, k2f and k2) that were determined

from a 14-day laboratory uptake-depuration experiment and field observations for BMFm
and BCFa obtained from real abalone farms. Wherever possible, we tried to account for

uncertainty in these estimates. Table 1 gives the published biokinetic data as the mean (l)
with one deviation (r) represented as 1 S.E. or 95% confidence limits (95% c.l.).

The goal of the distribution selection process for each input variables was to identify a

mathematical distribution expressing the range of variation and likelihood of values within

the range. The normal distribution function is rarely used to account for the uncertainty in

estimates because smooth symmetric variation of mean values is unexpected and data

might be insufficient for estimating a mean and standard deviation since individual

measurements reflecting interindividual variation about that mean, due to environmental or

physical factors. A second problem in applying the normal distribution to any quantity that

varies over a wide range is that such a wide normal distribution requires a certain fraction

of the parameters to have negative values. This problem combined with the frequently

observed skewed shape of the distribution, led to the use of the logarithmic transformation

of parameter data to obtain the lognormal distribution.

Table 1

Estimates of input biokinetic parameters obtained from published data and geometric mean and geometric

standard deviation for each parameter modeled as a lognormal distribution for the model simulation

Biokinetic

variablea
Deterministic

parameter values

Ref. Parameter of the lognormal

distributions employed

Geometric mean Geometric S.D.

k2 (day
� 1) 0.611F 0.53b Lin and Liao (1999) 0.437 4.13

k2f (day
� 1) 0.636F 0.26b Lin and Liao (1999) 0.602 1.53

BCFm (ml g� 1) 166F 16c Lin and Liao (1999) 165.22 1.10

BMFm (g g� 1) 1.53F 0.25c

(1.09, 1.87)d
Chen (1984, 1989),

Lin and Liao (1999),

Chen and Lee (1999)

1.51 1.19

BCFa (ml g� 1) 524F 149c

(329, 698)d
Lee et al. (1996),

Lin and Liao (1999),

Chen and Lee (1999)

501.00 1.39

a k2 is the depuration rate constant for Zn in abalone, k2f is the elimination rate constant for Zn from food in

abalone, BCFm is the bioconcentration factor for abalone, BMFm is the biomagnification factor for abalone and

BCFa is the bioconcentration factor for algae.
b MeanF 95% confidence limit.
c MeanF S.E.
d Values are (minimum, maximum).
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Moreover, the lognormal distribution is often considered the default in environmental

analysis (Finley et al., 1994; Thompson et al., 2000). Its extensive use may be explained by

the fact that environmental processes involve products of several variables, which suggests

applicability of the central limit theorem upon logarithmic transformation (Johnson et al.,

1995; Balthis et al., 1996; El-Shaarawi and Viverros, 1997; Vermeire et al., 2001; Jager et

al., 2001). The data are divided into a minimum of 10 bins as equally as possible, based on

a normal distribution in that the mean and S.E. or 95% c. l. are shown in Table 1.

We used the chi-square (v2) and the Kolmogorov–Smirnov (K–S) statistics (Zar, 1999)

to optimize the goodness-of-fit of distributions. Data and distribution parameters were

analyzed and estimated using the StatisticaR software package (StatSoft, Tulsa, OK,

USA). The StatisticaR software generated p-values for the v2 statistics and provided

critical values of dmax for the K–S statistics to estimate a values from 0.01 to 0.50. For

optimization, pz 0.05 considered good, p = 0.05–0.10 was acceptable and p < 0.10 was

poor. We determined that the lognormal distribution model fits the observed data favorably

and were transformed appropriately to ensure the data did not differ from a normal

distribution before parametric analysis. All input variables that modeled as the lognormal

distributions from which geometric mean (gm: lg) and geometric standard deviation (gsd:

rg) for each variable was calculated (Table 1). Table 1 indicates that parameter variability

(rg) of the estimate in k2 is broader than that in k2f, BCFm, BMFm and BCFa in that

variability determines the contribution of an input to the variance of model predictions.

Fig. 2 illustrates pdfs of the optimized lognormal distribution with gm and gsd (ln(lg,

rg)) for five of the model inputs. The histograms of source data with frequency functions

of the normal distribution (N(l, r)) are also shown. Therefore, we suggest that random

variables characterizing uncertainty about any model input biokinetic variable x has a

lognormal pdf with gm (rg,x) and gsd (lg,x) as xf fx(x) u ln(lg,x, qg,x) in that

fxðxÞ ¼
1ffiffiffiffiffiffi

2p
p

xlnrg;x

exp �
ðlnx� lnlg;xÞ2

2ðlnrg;xÞ2

 !
; ð8Þ

and the cumulative distribution function (cdf) can be expressed as

FxðxÞ ¼ U
lnx� lnlg; x

lnrg; x

� �
, ð9Þ

where U(�) is the cdf of the standard normal random variable.

2.3. Sensitivity analysis and validation

We are interested in the long-term equilibrium rather than the dynamics over a single

growing season. We used Eqs. (3) and (4) to predict Zn concentrations in abalone and algae.

Because the idea of the present model was to incorporate uncertainty into the model by

selecting model parameters from lognormal probability distributions rather than exper-

imentally derived values or field observations, we used a Monte Carlo technique to deal

with the uncertainty (Vose, 2000). To test the convergence and the stability of the numerical

output, we performed independent runs at 1000, 4000, 5000 and 10,000 iterations with each
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parameter sampled independently from the appropriate distribution at the start of each

replicate. Largely because of limitations in the data used to derive model parameters, inputs

were assumed to be independent. The coefficient of variation (the ratio of standard

deviation to mean for each number of iterations) was computed, with the conclusion that

5000 iterations are sufficient to ensure the stability of results. In this case, the numerical

error on the 95th percentile is equal to 2%. Sokal and Rohlf (1995) also indicated that more

than 1000 replicate simulations gives K–S 95% confidence limits of approximately F 4%

on output distributions and should be sufficient to ensure reliable results.

One step in trying to establish the range of conditions under which a model may be

considered reliable is to identify components of the model that are important to model

Fig. 2. Probability density functions of optimized lognormal distribution with geometric mean (lg) and geometric

standard deviation (rg) as ln(lg, rg) for five model inputs. The histogram of source data with frequency functions

of the normal distribution are also shown.
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results. If parameters of great importance to model output are well established experimen-

tally or in the field, then the reliability of the model is strengthened. Alternatively, if the

most important parameters are those that are less well-established, then future research

should be focused on those parameters to improve the predictive capabilities of the model.

To this purpose, a sensitivity analysis was performed in order to determine which pdfs have

the greatest effect on model results. Therefore, the final results were analyzed statistically to

identify the key parameters causing the model to reproduce the observed behavior.

The theory behind this sensitivity analysis is based on the separation between the

baseline and shifted (mean or variance shifts) cumulative distribution functions (cdfs), and

a K–S two-sample test is utilized to assess the separation (Hornberger and Spear, 1980;

Spear and Hornberger, 1980). The statistic dmax is determined as the maximum vertical

distance between the cdf curves for baseline and shifted functions. The large values of

dmax indicate that the parameter is important for simulating the model. The cdf curves also

highlight if the values of the parameters causing the model outputs were at the lower or

upper bounds or around the midpoint of the range.

Model predictions were compared to measurements of Zn concentration in algae and

soft tissue of abalone at three different abalone farms on Toucheng, Kouhu, and Anping, in

northern, central, and southern Taiwan region, respectively, to evaluate the predictive

ability of the model. Lin and Liao (1999) chose three appropriate management practices on

abalone farms for each study location and measured Zn concentrations in pond water,

algae and abalone, respectively. Three abalone, three algae samples, and three 500-ml

water samples per farm were collected. The nine abalone farms had similar feeding

strategies and the biomass of algae and abalone were monitored throughout each growing

season by the farm owners.

Simulations were run with each reported water Zn concentration measurements (cdfs of

water Zn concentration were also lognormal-transformed from field data), using the inputs

listed in Table 1. No other studies containing suitable data were identified, thus, extremely

limited field data are available for model validation.

3. Results

Fig. 3 shows the pdfs and cdfs of Zn in abalone and algae for abalone farms of

Toucheng, Kouhu and Anping. Probabilistic simulations of the bioaccumulation models

produced skewed distributions of predicted Zn concentrations. Percentile predictions of Zn

in abalone and algae in each abalone farm could be determined from cdfs illustrated in Fig.

3. Table 2 gives the percentile predictions of Zn concentrations in abalone and algae for

three selected abalone farms. We also used box and whisker plot to represent the

uncertainty in estimates of Zn concentration in abalone and algae (Fig. 4). Compared

with the field observations, median estimates of Zn in abalone and algae were less than

Fig. 3. Simulation results showing probability density functions and cumulative distribution functions of Zn

concentrations in H. diversilor supertexta and G. tenuistipitata var. lilu for three selected abalone farms: (A)

Toucheng, (B) Kouhu and (C) Anping. (E) Measured mean concentration in H. diversilor supertexta. (5)

Measured mean concentration in G. tenuistipitata var. lilu.
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measured mean values (Table 2). Five of six field observations of three selected abalone

farms are within the predicted 25th and 75th percentile range, and all fall within the 10th

and 90th percentile range (Table 2). Therefore, applying the Monte Carlo technique to the

first-order two-compartment model generated probabilistic estimates of Zn concentrations

Table 2

Percentile predictions of Zn concentration (Ag g� 1) in algae and abalone in abalone farms located at Toucheng,

Kouhu and Anping

Abalone farm Field observationsa Percentile predictions

Mean S.E. (Min, max) 10th 25th 50th 75th 90th

Toucheng

Water 131.04 31.99

Abalone 111.00 (93.45, 121.45) 10.21 24.89 61.95 121.87 218.42

Algae 91.04 (52.84, 111.08) 30.00 41.29 58.33 79.86 104.52

Kouhu

Water 60.71 21.60

Abalone 46.41 (38.21, 53.47) 4.57 11.74 26.96 58.03 110.23

Algae 25.44 (21.78, 32.39) 9.65 15.05 24.89 38.98 59.04

Anping

Water 69.59 32.23

Abalone 49.77 (44.95, 58.21) 4.39 13.71 31.07 64.86 120.87

Algae 31.93 (20.77, 45.98) 9.93 16.25 26.77 43.35 66.11

The field observations are also shown as mean (min, max), whereas measured water Zn concentrations (Ag l� 1)

are shown as mean with 1 S.E. (n= 9).
a Adapted from Lin and Liao (1999).

Fig. 4. Box and whisker plot representations of Zn concentration in H. diversilor supertexta and G. tenuistipitata

var. lilu collected from abalone farms in Toucheng, Kouhu and Anping.

C.-M. Liao et al. / Aquaculture 217 (2003) 285–299294



in abalone and algae that were consistent with field data. Relative to minimum and

maximum field data, however, lower and upper probabilistic percentile predictions were

more conservative. It is evidence that the modeling framework and the distributional

parameters and assumptions in the model are appropriate for estimating bioaccumulation

of Zn in abalone and algae.

Although those cdfs for Zn in abalone and algae present in Fig. 3 are equally

acceptable, they have different meanings. Risk associated with abalone exposure to Zn

in allowable residue concentration in Toucheng abalone farm has a greater likelihood of

occurrence than the same risk associated with exposure to Zn in Kouhu and Anping. The

comparison of median values of pdfs shows that abalone and algae exposure to Zn will

Table 3

Kolmogorov–Smirnov test for sensitivity analysis of model parameters significant at 95% level (0.152) or greater

Parameter Description dmax

BCFm Bioconcentration factor for abalone 0.194

k2 Depuration rate constant for Zn in abalone 0.183

k2f Elimination rate constant for Zn from food in abalone 0.177

Fig. 5. Overall display of probabilistic distributions of predicted Zn concentrations in H. diversilor supertexta and

G. tenuistipitata var. lilu subject to measured water Zn concentration at three selected abalone farms located at

north, central and south Taiwan region, respectively.
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cause, on average, the same risk in each selected abalone farms; and all estimated tissue Zn

concentrations have a higher uncertainty as quantified by the variance.

The relative skewness and spread in modeled output varied among water, abalone

and algae; distributions of Zn concentrations in abalone were more highly skewed, with

a long tail at higher concentrations (Fig. 3). Some median tissue concentrations

generated by probabilistic method were close to mean values. Measurements of

minimum and maximum were less widely spaced, or less conservative, than the 10th

and 90th percentile values of probabilistic output. An overall display of distributions of

predicted Zn concentrations in abalone and algae by abalone farm locations is illustrated

in Fig. 5.

In view of Fig. 2, abalone depuration rate constant k2 has a higher uncertainty as

quantified by the variance (i.e., parameter variability: rg), therefore, we assigned a

variance shift for k2, the other four parameters (BCFm, k2f, BMFm and BCFa) are assigned

as a mean shift. Based on the shift mappings for cdfs, the parameters and corresponding

dmax statistics that are significant above the 95% level are listed in Table 3. The parameters

listed are mainly those directly controlling the model outputs because the probability

model incorporated five stochastic variables in the calculation of Zn concentrations in

abalone (Eq. (7)). Simulated Zn concentrations in abalone were most sensitive to abalone

bioconcentration factor BCFm, abalone depuration rate constant k2, and abalone food

elimination rate constant k2f (Table 3). Biomagnification factor for abalone BMFm and

algae bioconcentration factor BCFa have values of 0.068 and 0.059, respectively, and as

such are not significant even at the 90% level (0.102).

Therefore, for Zn accumulation in abalone, the bioconcentration factor and depuration

rate constant of abalone are the most influential variables (Table 3). This information

implies that the mean value chosen in the deterministic bioaccumulation model for

BCFm and k2 contribution to Zn accumulation in abalone may not be sufficiently

conservative: It will lead to Zn in abalone associated with a probability of exceeding a

specific value of Zn, higher than the threshold considered acceptable in the probabilistic

context. For example, if the BCFm mean value corresponds to the 75% percentile of this

parameter distribution; the allowable concentrations for Zn in abalone are strongly

influenced by BCFm, and the resulting 75% level of conservatism implied in the mean

value is insufficient to ensure a 90% level of conservatism in the specific risk value

calculated in the deterministic context.

4. Discussion

Based on the available data, the ranges of Zn concentrations in abalone and algae are

overestimated within 75th and 90th precentiles, although median Zn concentrations

predicted did not exceed observations and most observations were between 25th and 70th

percentile predictions. Mean field data and median probabilistic predictions were similar in

magnitude and minimum and maximum field data were much more narrowly spaced than

the 10th and 90th percentile probabilistic predictions. This resulted from grouping

probabilistic extreme minimum and maximum values in field data, which usually leads to

unconservatism in exposure and risk estimates. Probabilistic 10th and 90th percentile
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estimates yielded slightly more relevant bounds of bioaccumulation in abalone since

parameters were sampled independently in the probabilistic simulations. Overpredictions

may result from many reasons, in particular, complex partitioning of Zn between water,

suspended solid, and nonlinear accumulation of ionic metals in abalone and algae (Knauer et

al., 1997). The model dose seems to represent the correct trends of Zn bioaccumulation.

Based on the contribution of key biokinetic parameters to output variance as

determined in sensitivity analysis, the most important biokinetic variables are BCF and

depuration/elimination rate constants (k2 and k2f) in abalone. These variables are worth

examining closely. Available data seem to provide reasonable measures of central

tendency, but replication is limited and variation is not well represented. Because its rg

is large, k2 has a certain impact on output variance. By using constant water concentrations

and varying BCFs independently, our model reveals that the BCFs for metals in abalone

are higher than that in algae, suggesting that BCFs of Zn in abalone may be positively

correlated with dissolved concentrations in water. Moreover, sensitivity analysis shows

that the contribution of BCFm to overall accumulation is large in abalone, thus,

considering the water route in abalone would appreciably affect estimates of total

accumulation. Bertine and Goldberg (1972) and Amiard-Triquet et al. (1987) indicated

that the levels of Zn in the algae-grazing mollusk, Gibbula umbillicalis and Littorina

littorea, are not different from Zn level in a brown alga, Fucus serratus, that is the food

species of the mollusks, indicating Zn in the abalone comes from the ambient water and

not from the algae. Lin and Liao (1999) also pointed out that uptake of Zn from water by

abalone is more significant compared with uptake from food. Therefore, when considering

the aquaculture of abalone, it is a priority to control Zn concentration in the pond water.

The probabilistic methods used show that field data or experimentally derived values

may hide significantly different levels of conservatism in relation to the uncertainty and

variability present in each biokinetic parameter. Variation and uncertainty in model inputs

were addressed using conservative assumptions, a range of abalone farm scenarios, and

probabilistic analysis. The analysis does not reflect all source of uncertainty. Voit and

Schubauer-Berigan (1998) pointed out that probabilistic analysis dose not account for

structural errors in the model or inaccurate distributions of input variables. Although

assuming independence among inputs is a common assumption in probabilistic analyses

for initial analyses and when data sufficient to derive correlation coefficients are

unavailable, biases may result that account for some of the overprediction of 75th

percentile in the present study. Indeed extrapolations from laboratory and field data are

both uncertain and may underestimate variability. Consequently, in this application,

probabilistic analysis may not provide accurate estimates of the distribution of Zn

concentrations or risks, for example in 90th percentile concentrations. Furthermore,

because model inputs were widely dispersed and lognormal distributed, predictions were

right-skewed and spanned large ranges.

Presumably, centers of distribution are more realistic than tails and, thus, the analysis

emphasizes 50th to 70th percentile predictions. Fortunately, available field data allow

validation over the range of model outputs, including the upper percentile predictions. The

model provides preliminary estimates of such statistic and this information is valuable

because it can be used to guide future analysis and data collection efforts. In fact, though

requiring more resources and skills, a Monte Carlo analysis carried out was very
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informative since it revealed the degree of conservatism and took into account the

reliability of results.

The possibility to perform a detailed and more precise sensitivity analysis is an

advantage that the probabilistic method provides relative to the deterministic one.

Sensitivity analysis indicates that to increase the accuracy of the results efforts should

focus on a better definition of probability distributions for abalone bioconcentration factor,

depuration and food elimination rate constants. Given the scarcity of data, most of the

probability distributions were based on limited observations from abalone farms, and this

may be a limit to the validity of the case presented.

In summary, this paper illustrates the use of probabilistic distributions for various

biokinetic and exposure factors in the context of a mechanistic bioaccumulation model that

is amenable to probabilistic analyses for Zn accumulation in abalone and in their food

source in the abalone farms.

Our results demonstrate that probabilistic simulations of the bioaccumulation model

generated probabilistic distributions of tissue Zn concentrations that are generally

consistent with field observations. The lower and upper probabilistic percentiles of Zn

concentrations in abalone and algae were conservative relative to minimum and maximum

observations in three selected abalone farms. Although these wide prediction ranges are

limited in precision, applying such conservative ranges in calculated tissue burdens may be

useful for modeling exposures to human consumption in risk assessments. Our model

suggests that a simpler statistic-based model, such as empirical regression of BCFs, may

generate more accurate predictions of bioaccumulation and be easier to parameterize. The

mechanistic bioaccumulation model, however, can be a promising tool for increasing the

understanding of heavy metals in aquacultural species as they are tested and refined.

It is our opinion that the incorporation of probabilistic analysis into evaluation of

accumulation greatly improves our ability to appraise the range of possible exposure

scenarios and environmental risk to aquacultural species and human who consume

contaminated fish and shellfish. Probabilistic exposure assessments will substantially reduce

the compounded conservatism that is inherent in risk assessments that rely on conservative

point value estimates for all biokinetic-and/or toxicological effects-related parameters.
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